About the Blog

During the Summer 2016 run of the Girls Talk Math camp, 26 high school girls from the triangle area came to the Mathematics department at UNC for two weeks to explore topics in mathematics they usually don’t get to see in high school. They split into 6 groups of 4 or 5 campers. Each group worked on one problem set that fell under one of 4 umbrella topics: Cryptography, Scientific Computing, Special Relativity, and Mathematical Modeling. In addition to solving problems, each group researched the life of a female mathematician whose work was related to the math they would be exploring during camp. The campers then created their own media to share what they learned. As a group they recorded a podcast detailing the life of their mathematician and wrote a blog post explaining the math problems they solved and what they learned about their topic.

Check out the blog posts below to see what our amazing campers worked so hard on throughout the camp!

Scientific Computing: Recurrence Relations

By: Kathryn Benedict, Kate Allen, Sarai Ross, Rosy Nuam

Girls Talk Math is an all girls camp that introduces new topics that students would not normally see in their everyday math class at school. This camp also brings together many young women to better explore a field that is male dominated. During this camp we were able to research many important women that we able to make their own legacy while facing much adversity along the way. The camp wants to show not only the campers but also other women going into the field of math and science to not be afraid due to the gender difference, but instead use it as motivation to carry on doing what you love and making your own legacy along the way.

Our group consisted of four young women. Kathryn is a rising sophomore at Cedar Ridge High School. Kate is a rising sophomore at Carrboro High School. Sarai is a rising junior at Northern Vance High School. Rosy is a rising senior at East Chapel Hill High School.

Continue reading

Monte Carlo and the Coding Tale

By: Michelle Chen, Cameron Farrar, Laura O’Sullivan, and Cat Bassett


Everything we do in life has a chance. That chance may come from picking the right card, picking a certain marble out of a bag or maybe deciding to give the first person who walks through a random door $100. Essentially,each chance has a certain trade-off of benefits. Often times we think about the chances as something will happen over the chance of something else taking place as we weigh possible outcomes. This is called risk analysis. One of the ways we can determine risk is we can use Monte Carlo simulations to replicate real life situations a large number of times in order to observe the long-term patterns without having the complications (cost, labor, materials, etc.) of manual repetition.

Continue reading

Mathematical Modeling (Fluid Dynamics)

By: Annie Huang, Heesue Kim, Sophie Gilliam, and Sylvia Towey

Hi guys!

Welcome to the Girls Talk Math blog today! This blog is to show you guys what we have learned and accomplished with fluid dynamics. At first, we (Annie, Heesue, Sophie, Sylvia) thought this was a very difficult topic but after some explanation and experiment, we learned how easy it is to work with the different topics thanks to the Girls Talk Math Camp held on the UNC Chapel Hill campus. Today we will be giving you a brief intro to mathematical modeling, Bernoulli’s principle, Dimensional Analysis, and Projectile motion.

Continue reading

Real World Cryptography

By: Shai Caspin, Natalie Bowers, Bryana Dorsey, Nia Pierce, and Cana Perry

Cryptography is the act of encrypting and decrypting codes. It’s used to pass secret messages and keep outsiders from accessing information. Math is used to help encrypt codes using different methods. One common methods is to use RSA encryptions, which uses prime numbers and mod functions to make deciphering impossible. RSA encryptions are so successful since factoring large numbers into their prime factors is incredibly difficult, and there is yet a way to do so quickly and efficiently. 

We were all very interested in learning more about cryptography since it incorporates everyday math with real-world problems and situations.

Continue reading

Intro to Relativity

By: Miranda Copenhaver, Chloe Nash, Wanda Wilkins, Lauren Behringer, and Jazmin Santillan C.


Throughout this week, we have worked through multiple problems dealing with both classical mechanics and special relativity. We found the main difference between classical mechanics and special relativity to be the assumptions made about time as a constant. This is what we mean:

  • In classical mechanics it is assumed that time is a constant that is observed the same for all viewers.
  • In special relativity time cannot be taken as a constant. Because the speed of light is the same for all observers, time-dilation occurs.

So, if you are getting a little lost it’s completely normal. We have a couple of examples of both classical mechanics and special relativity below:

Continue reading

The Art of Cryptography

By: Nia Beverly, Makayla McDaniel, Yuanyuan Matherly, and Tyler Deegan


Cryptography is defined as the art of writing and solving codes. Upon first thought, many people picture codes as an antiquated war time communication technique. However, the field of cryptography is alive and well,  and it has become pervasive in our everyday lives. The world is becoming more and more connected through technology, and with this, there is a greater need to protect information. Encryption is probably the most widely used application of cryptography, and it is used to protect information by making it so only one person with a key can understand what is transmitted. In the following paragraphs we will walk through the steps to mathematically understanding one widely used type of encryption.

Continue reading