The Art of Cryptography

By: Nia Beverly, Makayla McDaniel, Yuanyuan Matherly, and Tyler Deegan


Cryptography is defined as the art of writing and solving codes. Upon first thought, many people picture codes as an antiquated war time communication technique. However, the field of cryptography is alive and well,  and it has become pervasive in our everyday lives. The world is becoming more and more connected through technology, and with this, there is a greater need to protect information. Encryption is probably the most widely used application of cryptography, and it is used to protect information by making it so only one person with a key can understand what is transmitted. In the following paragraphs we will walk through the steps to mathematically understanding one widely used type of encryption.

Continue reading

Scientific Computing: Recurrence Relations

By: Kathryn Benedict, Kate Allen, Sarai Ross, Rosy Nuam

Girls Talk Math is an all girls camp that introduces new topics that students would not normally see in their everyday math class at school. This camp also brings together many young women to better explore a field that is male dominated. During this camp we were able to research many important women that we able to make their own legacy while facing much adversity along the way. The camp wants to show not only the campers but also other women going into the field of math and science to not be afraid due to the gender difference, but instead use it as motivation to carry on doing what you love and making your own legacy along the way.

Our group consisted of four young women. Kathryn is a rising sophomore at Cedar Ridge High School. Kate is a rising sophomore at Carrboro High School. Sarai is a rising junior at Northern Vance High School. Rosy is a rising senior at East Chapel Hill High School.

Continue reading

Elliptic Curve Cryptography

By Mukta Dharmapurikar, Anagha Jandhyala, Savanna Jones, and Ciara Renaud.

Have you ever wondered how your credit card number stays secure after shopping online? Every day millions of people’s personal information is entered online or stored in databases, where it seems like anyone could access it. However, a process called cryptography keeps theft from occurring.

Cryptography is the ancient art of keeping secret messages secure. Elliptic curve cryptography is one type of encryption that we spent the last two weeks learning about. It has some advantages over the more common cryptography method, known as RSA.

RSA relies on the difficulty of factoring very large prime numbers. Despite the current security, it’s feasible that one day a method could be invented that makes factoring large prime numbers realistic. In this blog post, we will be explaining the essential math behind how elliptic curves work and how they are used to encrypt messages.

Continue reading

Number Systems

By Miranda Copenhaver, Nancy Hindman*, Efiotu Jagun, and Gloria Su.

*Nancy helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

Number systems are how we represent numbers like 1, 32, and 75. We use the base ten (decimal) system for our numbers most of the time. It’s called base ten because it uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. But what if I told you that 1001101 and 4D both mean seventy-seven? Crazy, right? There are countless number systems, but today we will be focusing on two: hexadecimal (base sixteen) and binary (base two)!

As we’ve said before, the binary system is base two; it only uses 0 and 1. Since only 1 or 0 can be used, the placement of each digit is important. Computers use binary to store and transfer information. It is used in communication (Morse code, braille) and everything electronic like computers, lights, calculators, MP3s, MIDI, JPEG, etc. 

Continue reading

Quantum Mechanics

By Izzy Cox, Divya Iyer, Wgoud Mansour, Ashleigh Sico, and Elizabeth Whetzel.

Quantum Mechanics is the physics of molecular and microscopic particles. However, it has applications in everyday life as well. If someone asked you if a human was a particle or a wave, what would you think? What about a ball? What about light? Not so easy now, is it? It turns out that all of those things, and in fact, everything around us, can be expressed in physics as both a particle and a wave. This might seem a little unbelievable, but for now, let’s start with the basics.


Classical Physics

Although Classical Physics sounds like a complicated idea, it’s the most simple branch of physics. It’s what you think of when someone says “physics”. Classical Physics lays the basic foundation to Quantum Physics with a few basic laws.

Continue reading

Mathematical Modeling (Fluid Dynamics)

By: Annie Huang, Heesue Kim, Sophie Gilliam, and Sylvia Towey

Hi guys!

Welcome to the Girls Talk Math blog today! This blog is to show you guys what we have learned and accomplished with fluid dynamics. At first, we (Annie, Heesue, Sophie, Sylvia) thought this was a very difficult topic but after some explanation and experiment, we learned how easy it is to work with the different topics thanks to the Girls Talk Math Camp held on the UNC Chapel Hill campus. Today we will be giving you a brief intro to mathematical modeling, Bernoulli’s principle, Dimensional Analysis, and Projectile motion.

Continue reading

Network Science

By Myla James, Shania Johnson, Maya Mukerjee, and Savitha Saminathan.


Graph Theory

Here’s some definitions to help you understand our assignment:

Nodes – vertex/point.
Edges – lines connecting vertices.
Adjacent – two nodes (vertices) are adjacent if they share an edge (line).
Degree – number of edges adjacent to a particular node.

We started this problem set with learning about the difference between connected and disconnected graphs.

Connected Graph – able to travel from one node to any other through its edges.
Disconnected graph – more complex; it has components.
Components – parts of the graphs that are connected.

Continue reading

Monte Carlo and the Coding Tale

By: Michelle Chen, Cameron Farrar, Laura O’Sullivan, and Cat Bassett


Everything we do in life has a chance. That chance may come from picking the right card, picking a certain marble out of a bag or maybe deciding to give the first person who walks through a random door $100. Essentially,each chance has a certain trade-off of benefits. Often times we think about the chances as something will happen over the chance of something else taking place as we weigh possible outcomes. This is called risk analysis. One of the ways we can determine risk is we can use Monte Carlo simulations to replicate real life situations a large number of times in order to observe the long-term patterns without having the complications (cost, labor, materials, etc.) of manual repetition.

Continue reading

Knot Theory

By Nethania Okyere, Rachel Rozansky, Ashleigh Taylor, and Sylvia Towey

Knot Theory

The knot theory are two mathematical branches of topology. Its simply a loop in 3 dimensional space( doesn’t intersect itself). Knots can be described in various ways. Given a method of description, however, there may be more than one description that represents the same knot. For example, a common method of describing a knot is using a knot diagram. Any given knot can be drawn in many different ways using a knot diagram.

1knots knot theory

Continue reading


By Elizabeth Datskevych, Nina Hadley, Sabrina James, and Rachel Ruff

In our problem set for the classification of surfaces, we learned many things about dimensions, folding, and the shapes folding makes. First we learned about what a dimension is. The definition of a dimension in this math is the direction an object can go. For example a bird can go up/down, left/right, and back/forth. Next we learned about folding and twisting objects. Diagram A shows a square with arrows on its side, which are the directions to fold. When you fold you match the arrows according to if they look-alike. So when you fold Diagram A it makes a cylinder. Now Diagram B has one arrow pointing the opposite of the other so you would twist before connecting the sides. Diagram B makes a Mobius band. We could make other shapes using the arrows such as the Klein bottle, and the torus. This topic was very fun and cool and it is a subject everyone will enjoy!!!!!!!!!!!!!!!!!!!!!!!#girlstalkmath #girlsrock #blog2017