Network Science

by Kayla Aguilar, Maris James, and Aynsley Szczesniak.

Data is all around us, but it has to be studied in some way, right? How else are we supposed to know what it’s about? That’s what graph theory and network science are for! To organize and connect data mathematicians use networks and graphs as well as scientific computing (like coding).

Network science is an application-based study of graphs. To understand network science, we first have to understand the graphs:

 

Graph Theory

Graphs represent data through nodes, which are the separate points of a graph, and edges, which connect the nodes. There are two types of graphs: directed and undirected graphs. Directed graphs rely on the order of the vertices to be the same, while undirected graphs don’t rely on the order of the nodes.

Continue reading

Quantum Mechanics

By Kathryn Benedict, Olivia Fugikawa, Denna Huang, and Eleanor McAdon

Intro

Quantum mechanics is a subfield of physics. Like with any other major area of study, physics is divided into many smaller categories. Classical physics is the main one, which includes Newton’s Laws of Motion and basic principles of mechanics, like inertia and friction. Things get weird when you delve into modern physics, which includes special relativity, general relativity, and quantum mechanics. Special relativity deals with particles moving at the speed of light, general relativity works with incredibly massive objects and quantum mechanics is the physics of subatomic particles. This is what we worked on for the past two weeks and what our blog post is about!

Continue reading

Network Science

By Cameron Farrar, Elizabeth Gross, Shiropa Noor, and Rebecca Rozansky

Girls Talk Math was an eyeopening experience to a brand new world of mathematics. Over the past two weeks, we have been introduced to multiple topics and related professions. We learned about: quantum mechanics, surface classification, knot theory, computing & dynamics, elliptic curve cryptography, RSA encryption, special relativity and the most interesting of them all- NETWORK SCIENCE!

During our time at Girls Talk Math, we learned about the wonders of network science and graph theory. The difficult part of this otherwise enjoyable journey? Mathematica. Mathematica is a software created to make you suffer, especially if you already know computer science (AHEM BECKY). Basically, we created graphs, did calculations and got confused on Mathematica. Typing out all the commands took ages. We’ll show you some examples as we go through the different concepts we explored. Don’t worry- once you spend some time on Mathematica, you’ll get used to it.

Continue reading

Quantum Mechanics

By Izzy Cox, Divya Iyer, Wgoud Mansour, Ashleigh Sico, and Elizabeth Whetzel.

Quantum Mechanics is the physics of molecular and microscopic particles. However, it has applications in everyday life as well. If someone asked you if a human was a particle or a wave, what would you think? What about a ball? What about light? Not so easy now, is it? It turns out that all of those things, and in fact, everything around us, can be expressed in physics as both a particle and a wave. This might seem a little unbelievable, but for now, let’s start with the basics.

 

Classical Physics

Although Classical Physics sounds like a complicated idea, it’s the most simple branch of physics. It’s what you think of when someone says “physics”. Classical Physics lays the basic foundation to Quantum Physics with a few basic laws.

Continue reading

Classification of Surfaces

By Ayanna Blake, Lisa Oommen*, Myla Marve, Tamarr Moore, Caylah Vickers, and Lily Zeng.

*Lisa helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

The Girls Talk Math camp is about female high school students from different places who discuss mathematics, mathematicians, and theories. We were split up into groups and were assigned different math topics to learn. Our topic was classification of surfaces, which is listed under the umbrella topic of abstract geometry.

We thought the surfaces project was very interesting and cool to learn about, because it introduced us to college level math and allowed us to understand different parts of geometry. Along with gaining knowledge of surfaces, we also got to learn about other groups topics. Campers presented their topics on the last day and helped us to perceive the significance of the different subjects.

Continue reading

Surfaces

By Elizabeth Datskevych, Nina Hadley, Sabrina James, and Rachel Ruff

In our problem set for the classification of surfaces, we learned many things about dimensions, folding, and the shapes folding makes. First we learned about what a dimension is. The definition of a dimension in this math is the direction an object can go. For example a bird can go up/down, left/right, and back/forth. Next we learned about folding and twisting objects. Diagram A shows a square with arrows on its side, which are the directions to fold. When you fold you match the arrows according to if they look-alike. So when you fold Diagram A it makes a cylinder. Now Diagram B has one arrow pointing the opposite of the other so you would twist before connecting the sides. Diagram B makes a Mobius band. We could make other shapes using the arrows such as the Klein bottle, and the torus. This topic was very fun and cool and it is a subject everyone will enjoy!!!!!!!!!!!!!!!!!!!!!!!#girlstalkmath #girlsrock #blog2017

RSA Encryption Cryptography

by Lily Taylor, Zoe Tobien, Tehya Weaver, and Tayloir Wiley.

RSA Encryption Cryptography

What is RSA Encryption Cryptography?

RSA was one of the first public-key* cryptosystems and it is widely used for secure data transmission. It was first created by Ron Rivest, Adi Shamir, and Leona Adleman.

*Public key is used to establish a secret key, and the public key is sent in public. We then use the private key method to encrypt and decrypt large amounts of data, but no one knows the private key.

  • To code: U^s=x X(mod N)=Y
  • To decode Y^t=O O(mod N)=U

In computing, the modulo operation finds the remainder after division of one number by another. Given two positive numbers, a and n, a modulo n (in other words a mod n) is the remainder of the a division of a by n, where a is the dividend and n is the divisor.

Continue reading

Special Relativity

By Katie Clark, Tori Dunston, Kelly Fan, Abrianna Macklin, and McKenna Vernon

Picture a hummingbird. At any moment, it can go in any of the three dimensions it is a part of. So, it could go up and down, forwards and backwards, or left and right. But, one thing that is not taken into account is time. As it moves through space, it is also occupying time. However, we’re not used to thinking about our world in a four dimensional sense. But, as the movement of the pigeon progresses, so does time. This is known as the relationship between space and time, and it is the primary foundation that special relativity is built on. So, at any given moment, it actually can move in four dimensions at once. This can be simply modeled using a spacetime diagram.

lightcone3

Continue reading

Monte Carlo and the Coding Tale

By: Michelle Chen, Cameron Farrar, Laura O’Sullivan, and Cat Bassett

Introduction

Everything we do in life has a chance. That chance may come from picking the right card, picking a certain marble out of a bag or maybe deciding to give the first person who walks through a random door $100. Essentially,each chance has a certain trade-off of benefits. Often times we think about the chances as something will happen over the chance of something else taking place as we weigh possible outcomes. This is called risk analysis. One of the ways we can determine risk is we can use Monte Carlo simulations to replicate real life situations a large number of times in order to observe the long-term patterns without having the complications (cost, labor, materials, etc.) of manual repetition.

Continue reading