RSA Encryption Cryptography

By Camille Clark, Layke Jones, Isabella Lane, Aza McFadden*, and Lizbeth Otero.

*Aza helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

Cryptography is a field of coding and decoding information. It relies on the framework of number theory. Therefore, it can be used to connect theories as well as teaching others the fundamental properties of integers. Relevant number theory topics are modular arithmetic, prime factorization, greatest common divisor, and theorems such as the Chinese Remainder Theorem and Euler’s Theorem. This blog post will focus on the first three topics.

Continue reading

Knot Theory

By Jillian Byrnes, Monique Dacanay, Kaycee DeArmey,  Alana Drumgold, Ariyana Smith*, and Wisdom Talley*.

*Ariyana and Wisdom helped the group work through the problem set but were unfortunately unable to attend camp during the blog writing.

A mathematical knot is a loop in three-dimensional space that doesn’t intersect itself, and knot theory is the topological study of these knots. Two knots are considered to be equivalent if they can be stretched or bent into each other without cutting or passing  through themselves. The simplest of these knots is known as the unknot, which is just a circle or its equivalence. Similar to a knot is a link, which is multiple knots intersecting each other. Both knots and links are often described in the form of knot diagrams, which are two-dimensional representations of the three-dimensional shape. There are an infinite number of both knots and links, but here are a few examples in diagram form:

Continue reading

Elliptic Curve Cryptography

By Noa Bearman, Kimberly Cruz Lopez, Tina Lin, Xintong Xiang, and Maria Neri Otero*

*Maria helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

Screen Shot 2017-06-29 at 1.50.17 PM

Introduction

Have you ever tried to send a secret message to a friend? Did it work? Was it secure? Well, one way to do so in a more secure way is by using Elliptic Curve Cryptography (ECC). Most people have never heard of ECC before, and two weeks ago, neither did we. However, in the past two weeks, we have been learning how to use this exciting application of the techniques of algebraic geometry and abstract algebra applied to the ancient art of keeping messages secure. ECC was first introduced by Victor Miller and Neal Koblitz in 1985. It was proposed as an alternative to other forms of cryptography with public-key systems such as DSA and RSA. Public-key systems involve the use of two different kinds of keys: a public key that is available to the public and a private key in which only the owner knows. The applications of ECC has been growing and has recently gained a lot of attention in industry and academia. The following information below will go more in-depth on what ECC is, how it works, its advantages, its disadvantages, and our progression throughout this course.

Continue reading

RSA Encryption Cryptography

by Lily Taylor, Zoe Tobien, Tehya Weaver, and Tayloir Wiley.

RSA Encryption Cryptography

What is RSA Encryption Cryptography?

RSA was one of the first public-key* cryptosystems and it is widely used for secure data transmission. It was first created by Ron Rivest, Adi Shamir, and Leona Adleman.

*Public key is used to establish a secret key, and the public key is sent in public. We then use the private key method to encrypt and decrypt large amounts of data, but no one knows the private key.

  • To code: U^s=x X(mod N)=Y
  • To decode Y^t=O O(mod N)=U

In computing, the modulo operation finds the remainder after division of one number by another. Given two positive numbers, a and n, a modulo n (in other words a mod n) is the remainder of the a division of a by n, where a is the dividend and n is the divisor.

Continue reading

RSA Encryption Cryptography

By Divya Aikat, Helena Harrison, Annie Qin, and Quinn Shanahan

The definition of cryptography is the art of writing and solving code. However, over the last two weeks, we learned so much more than just this textbook explanation. While working together within our team, we explored many different aspects behind cryptography. By building off our individual strengths, we prepared ourselves for higher level mathematics. The following is a synopsis of the progress we’ve made over the past two weeks.

Continue reading

The Art of Cryptography

By: Nia Beverly, Makayla McDaniel, Yuanyuan Matherly, and Tyler Deegan

Introduction

Cryptography is defined as the art of writing and solving codes. Upon first thought, many people picture codes as an antiquated war time communication technique. However, the field of cryptography is alive and well,  and it has become pervasive in our everyday lives. The world is becoming more and more connected through technology, and with this, there is a greater need to protect information. Encryption is probably the most widely used application of cryptography, and it is used to protect information by making it so only one person with a key can understand what is transmitted. In the following paragraphs we will walk through the steps to mathematically understanding one widely used type of encryption.

Continue reading

Classification of Surfaces

By Ayanna Blake, Lisa Oommen*, Myla Marve, Tamarr Moore, Caylah Vickers, and Lily Zeng.

*Lisa helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

The Girls Talk Math camp is about female high school students from different places who discuss mathematics, mathematicians, and theories. We were split up into groups and were assigned different math topics to learn. Our topic was classification of surfaces, which is listed under the umbrella topic of abstract geometry.

We thought the surfaces project was very interesting and cool to learn about, because it introduced us to college level math and allowed us to understand different parts of geometry. Along with gaining knowledge of surfaces, we also got to learn about other groups topics. Campers presented their topics on the last day and helped us to perceive the significance of the different subjects.

Continue reading

Mathematical Epidemiology

by Jillian Byrnes, La’Ziyah Henry, Delphine Liu, Sophie Ussery, and Elizabeth Whetzel.

What is Mathematical Epidemiology?

What is mathematical epidemiology? Well, mathematical epidemiology is when mathematicians use math to predict outcomes in various statistical problems. These problems include growth in infectious bacteria, change in population, and even the effects of climate change. Why is this used? It is used because it doesn’t need a complete set of data to figure out a solution, as long as you can create an equation and plug in the values.

Who uses it? Mathematicians and scientists use it in fields such as biotechnology, medical science, civil engineering, and as public health professionals.

Continue reading

Scientific Computing: Recurrence Relations

By: Kathryn Benedict, Kate Allen, Sarai Ross, Rosy Nuam

Girls Talk Math is an all girls camp that introduces new topics that students would not normally see in their everyday math class at school. This camp also brings together many young women to better explore a field that is male dominated. During this camp we were able to research many important women that we able to make their own legacy while facing much adversity along the way. The camp wants to show not only the campers but also other women going into the field of math and science to not be afraid due to the gender difference, but instead use it as motivation to carry on doing what you love and making your own legacy along the way.

Our group consisted of four young women. Kathryn is a rising sophomore at Cedar Ridge High School. Kate is a rising sophomore at Carrboro High School. Sarai is a rising junior at Northern Vance High School. Rosy is a rising senior at East Chapel Hill High School.

Continue reading

Mathematical Modeling (Fluid Dynamics)

By: Annie Huang, Heesue Kim, Sophie Gilliam, and Sylvia Towey

Hi guys!

Welcome to the Girls Talk Math blog today! This blog is to show you guys what we have learned and accomplished with fluid dynamics. At first, we (Annie, Heesue, Sophie, Sylvia) thought this was a very difficult topic but after some explanation and experiment, we learned how easy it is to work with the different topics thanks to the Girls Talk Math Camp held on the UNC Chapel Hill campus. Today we will be giving you a brief intro to mathematical modeling, Bernoulli’s principle, Dimensional Analysis, and Projectile motion.

Continue reading