Special Relativity

By Katie Clark, Tori Dunston, Kelly Fan, Abrianna Macklin, and McKenna Vernon

Picture a hummingbird. At any moment, it can go in any of the three dimensions it is a part of. So, it could go up and down, forwards and backwards, or left and right. But, one thing that is not taken into account is time. As it moves through space, it is also occupying time. However, we’re not used to thinking about our world in a four dimensional sense. But, as the movement of the pigeon progresses, so does time. This is known as the relationship between space and time, and it is the primary foundation that special relativity is built on. So, at any given moment, it actually can move in four dimensions at once. This can be simply modeled using a spacetime diagram.


Continue reading

Scientific Computing: Recurrence Relations

By: Kathryn Benedict, Kate Allen, Sarai Ross, Rosy Nuam

Girls Talk Math is an all girls camp that introduces new topics that students would not normally see in their everyday math class at school. This camp also brings together many young women to better explore a field that is male dominated. During this camp we were able to research many important women that we able to make their own legacy while facing much adversity along the way. The camp wants to show not only the campers but also other women going into the field of math and science to not be afraid due to the gender difference, but instead use it as motivation to carry on doing what you love and making your own legacy along the way.

Our group consisted of four young women. Kathryn is a rising sophomore at Cedar Ridge High School. Kate is a rising sophomore at Carrboro High School. Sarai is a rising junior at Northern Vance High School. Rosy is a rising senior at East Chapel Hill High School.

Continue reading

The Art of Cryptography

By: Nia Beverly, Makayla McDaniel, Yuanyuan Matherly, and Tyler Deegan


Cryptography is defined as the art of writing and solving codes. Upon first thought, many people picture codes as an antiquated war time communication technique. However, the field of cryptography is alive and well,  and it has become pervasive in our everyday lives. The world is becoming more and more connected through technology, and with this, there is a greater need to protect information. Encryption is probably the most widely used application of cryptography, and it is used to protect information by making it so only one person with a key can understand what is transmitted. In the following paragraphs we will walk through the steps to mathematically understanding one widely used type of encryption.

Continue reading

Classification of Surfaces

by Camille Clark, Layke Jones, Aekta Kallepalli, Maya Mukerjee, and Caroline Zhou.


Euler Characteristics

Euler characteristics

Euler characteristics are defined by the equation V- E + F = 2 where V = number of vertices, E = number of edges or nodes, and F = number of faces. Sometimes though, the equation V – E + F = 2 does not work for all situations because the solution can give various outcomes due to the dimensions and simplicity of the object. If 2 objects are topologically the same, they will have the same Euler characteristics. For all simple polygons, the Euler characteristics equal one. Figures with holes don’t follow these conventions as the holes in these figures add additional faces and edges not proportional to the formulas for simple figures.

Continue reading

Number Systems

by Alysia Davis, Alyssa Drumgold, Pascale Gomez, Delaney Washington, and Auden Wolfe.


Intro to Number Systems

As children we grew up counting in the base ten system (1, 2, 3, etc). However, base ten is only one of many numerical systems. Over these past to weeks at Girls Talk Math at UNC, our  task was to explore other number systems that are not as frequently used as the base 10 system, specifically binary and hexadecimal number systems.



The exact definition of binary is related to using a system of numerical notation that has 2 rather than 10 as a base. This means only two single digits are used, 0 and 1. 

Binary is used for data storage. Binary basically makes it easier for computer processors to understand and interpret incoming information/instructions.

Binary was first discussed by Gottfried Leibniz in 1689 but binary numerical systems were not put to use until a binary converter was created hundreds of years later. The binary system was officially implemented just before the beginning of the nineteenth century.

Continue reading

Intro to Relativity

By: Miranda Copenhaver, Chloe Nash, Wanda Wilkins, Lauren Behringer, and Jazmin Santillan C.


Throughout this week, we have worked through multiple problems dealing with both classical mechanics and special relativity. We found the main difference between classical mechanics and special relativity to be the assumptions made about time as a constant. This is what we mean:

  • In classical mechanics it is assumed that time is a constant that is observed the same for all viewers.
  • In special relativity time cannot be taken as a constant. Because the speed of light is the same for all observers, time-dilation occurs.

So, if you are getting a little lost it’s completely normal. We have a couple of examples of both classical mechanics and special relativity below:

Continue reading

RSA Encryption Cryptography

by Lily Taylor, Zoe Tobien, Tehya Weaver, and Tayloir Wiley.

RSA Encryption Cryptography

What is RSA Encryption Cryptography?

RSA was one of the first public-key* cryptosystems and it is widely used for secure data transmission. It was first created by Ron Rivest, Adi Shamir, and Leona Adleman.

*Public key is used to establish a secret key, and the public key is sent in public. We then use the private key method to encrypt and decrypt large amounts of data, but no one knows the private key.

  • To code: U^s=x X(mod N)=Y
  • To decode Y^t=O O(mod N)=U

In computing, the modulo operation finds the remainder after division of one number by another. Given two positive numbers, a and n, a modulo n (in other words a mod n) is the remainder of the a division of a by n, where a is the dividend and n is the divisor.

Continue reading


By Elizabeth Datskevych, Nina Hadley, Sabrina James, and Rachel Ruff

In our problem set for the classification of surfaces, we learned many things about dimensions, folding, and the shapes folding makes. First we learned about what a dimension is. The definition of a dimension in this math is the direction an object can go. For example a bird can go up/down, left/right, and back/forth. Next we learned about folding and twisting objects. Diagram A shows a square with arrows on its side, which are the directions to fold. When you fold you match the arrows according to if they look-alike. So when you fold Diagram A it makes a cylinder. Now Diagram B has one arrow pointing the opposite of the other so you would twist before connecting the sides. Diagram B makes a Mobius band. We could make other shapes using the arrows such as the Klein bottle, and the torus. This topic was very fun and cool and it is a subject everyone will enjoy!!!!!!!!!!!!!!!!!!!!!!!#girlstalkmath #girlsrock #blog2017

Knot Theory

By Nethania Okyere, Rachel Rozansky, Ashleigh Taylor, and Sylvia Towey

Knot Theory

The knot theory are two mathematical branches of topology. Its simply a loop in 3 dimensional space( doesn’t intersect itself). Knots can be described in various ways. Given a method of description, however, there may be more than one description that represents the same knot. For example, a common method of describing a knot is using a knot diagram. Any given knot can be drawn in many different ways using a knot diagram.

1knots knot theory

Continue reading