Mathematical Epidemiology

by Jillian Byrnes, La’Ziyah Henry, Delphine Liu, Sophie Ussery, and Elizabeth Whetzel.

What is Mathematical Epidemiology?

What is mathematical epidemiology? Well, mathematical epidemiology is when mathematicians use math to predict outcomes in various statistical problems. These problems include growth in infectious bacteria, change in population, and even the effects of climate change. Why is this used? It is used because it doesn’t need a complete set of data to figure out a solution, as long as you can create an equation and plug in the values.

Who uses it? Mathematicians and scientists use it in fields such as biotechnology, medical science, civil engineering, and as public health professionals.

Continue reading

Number Systems

By Miranda Copenhaver, Nancy Hindman*, Efiotu Jagun, and Gloria Su.

*Nancy helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

Number systems are how we represent numbers like 1, 32, and 75. We use the base ten (decimal) system for our numbers most of the time. It’s called base ten because it uses ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. But what if I told you that 1001101 and 4D both mean seventy-seven? Crazy, right? There are countless number systems, but today we will be focusing on two: hexadecimal (base sixteen) and binary (base two)!

As we’ve said before, the binary system is base two; it only uses 0 and 1. Since only 1 or 0 can be used, the placement of each digit is important. Computers use binary to store and transfer information. It is used in communication (Morse code, braille) and everything electronic like computers, lights, calculators, MP3s, MIDI, JPEG, etc. 

Continue reading

Elliptic Curve Cryptography

by Alana Drumgold*, Lauren Flowers, Emily Huang, Tamarr Moore*, and Ashleigh Sico.

*Alana and Tamarr helped the group work through the problem set but were unfortunately unable to attend camp during the blog writing.

For years, people have been trying to find a way to send secret messages. This may have been easy to do in the ancient times of the Roman Empire, where you could write a message, and then hand-deliver it to your recipient.  This way, you could be certain that nobody else could intercept it. However, this becomes a lot more difficult in today’s online tech-driven world. People no longer hand-deliver letters; rather, we email or text our friends.  So how do we make sure that nobody else can intercept your text message as it travels the internet before finally landing on your friend’s cell-phone? The answer is found in cryptography, a technology that is becoming more and more important in today’s world.  Today, we are going to focus on one particular form of cryptography: elliptic curve cryptography.

Continue reading

Elliptic Curve Cryptography

By Noa Bearman, Kimberly Cruz Lopez, Tina Lin, Xintong Xiang, and Maria Neri Otero*

*Maria helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

Screen Shot 2017-06-29 at 1.50.17 PM

Introduction

Have you ever tried to send a secret message to a friend? Did it work? Was it secure? Well, one way to do so in a more secure way is by using Elliptic Curve Cryptography (ECC). Most people have never heard of ECC before, and two weeks ago, neither did we. However, in the past two weeks, we have been learning how to use this exciting application of the techniques of algebraic geometry and abstract algebra applied to the ancient art of keeping messages secure. ECC was first introduced by Victor Miller and Neal Koblitz in 1985. It was proposed as an alternative to other forms of cryptography with public-key systems such as DSA and RSA. Public-key systems involve the use of two different kinds of keys: a public key that is available to the public and a private key in which only the owner knows. The applications of ECC has been growing and has recently gained a lot of attention in industry and academia. The following information below will go more in-depth on what ECC is, how it works, its advantages, its disadvantages, and our progression throughout this course.

Continue reading

Number Systems

by Alysia Davis, Alyssa Drumgold, Pascale Gomez, Delaney Washington, and Auden Wolfe.

 

Intro to Number Systems

As children we grew up counting in the base ten system (1, 2, 3, etc). However, base ten is only one of many numerical systems. Over these past to weeks at Girls Talk Math at UNC, our  task was to explore other number systems that are not as frequently used as the base 10 system, specifically binary and hexadecimal number systems.

 

Binary

The exact definition of binary is related to using a system of numerical notation that has 2 rather than 10 as a base. This means only two single digits are used, 0 and 1. 

Binary is used for data storage. Binary basically makes it easier for computer processors to understand and interpret incoming information/instructions.

Binary was first discussed by Gottfried Leibniz in 1689 but binary numerical systems were not put to use until a binary converter was created hundreds of years later. The binary system was officially implemented just before the beginning of the nineteenth century.

Continue reading

Elliptic Curve Cryptography

By Mukta Dharmapurikar, Anagha Jandhyala, Savanna Jones, and Ciara Renaud.

Have you ever wondered how your credit card number stays secure after shopping online? Every day millions of people’s personal information is entered online or stored in databases, where it seems like anyone could access it. However, a process called cryptography keeps theft from occurring.

Cryptography is the ancient art of keeping secret messages secure. Elliptic curve cryptography is one type of encryption that we spent the last two weeks learning about. It has some advantages over the more common cryptography method, known as RSA.

RSA relies on the difficulty of factoring very large prime numbers. Despite the current security, it’s feasible that one day a method could be invented that makes factoring large prime numbers realistic. In this blog post, we will be explaining the essential math behind how elliptic curves work and how they are used to encrypt messages.

Continue reading

Classification of Surfaces

by Camille Clark, Layke Jones, Aekta Kallepalli, Maya Mukerjee, and Caroline Zhou.

 

Euler Characteristics

Euler characteristics

Euler characteristics are defined by the equation V- E + F = 2 where V = number of vertices, E = number of edges or nodes, and F = number of faces. Sometimes though, the equation V – E + F = 2 does not work for all situations because the solution can give various outcomes due to the dimensions and simplicity of the object. If 2 objects are topologically the same, they will have the same Euler characteristics. For all simple polygons, the Euler characteristics equal one. Figures with holes don’t follow these conventions as the holes in these figures add additional faces and edges not proportional to the formulas for simple figures.

Continue reading

The Art of Cryptography

By: Nia Beverly, Makayla McDaniel, Yuanyuan Matherly, and Tyler Deegan

Introduction

Cryptography is defined as the art of writing and solving codes. Upon first thought, many people picture codes as an antiquated war time communication technique. However, the field of cryptography is alive and well,  and it has become pervasive in our everyday lives. The world is becoming more and more connected through technology, and with this, there is a greater need to protect information. Encryption is probably the most widely used application of cryptography, and it is used to protect information by making it so only one person with a key can understand what is transmitted. In the following paragraphs we will walk through the steps to mathematically understanding one widely used type of encryption.

Continue reading

Mathematical Epidemiology

By Camilla Fratta, Ananya Jain, Sydney Mason, Gabby Matejowsky, and Nevaeh Pinkney*.

*Nevaeh helped the group work through the problem set but was unfortunately unable to attend camp during the blog writing.

Mathematical Epidemiology explores the realm of mathematics applied to public health. It relies on modeling to use known information about certain scenarios regarding the spread of diseases and then uses it to predict future outcomes. By the end of the problem set, our group learned about the challenging process that comes with trying to predict population sizes in order to control the spreading of diseases. The equations that are faced in this branch of mathematics are at the heart of mathematical modeling.

Mathematical Models and Modeling

A mathematical model is an equation used to predict or model the most likely results to occur in a real-world situation.  We used these types of equations to model the spread of a disease in a population, tracking the flow of populations from susceptible to infected to recovered.  In real life scenarios, there are too many variables to fully account for, so we only were able to place a few in our equations. This made the models less accurate, but at the same time very useful to us in our problem set.  They gave us a good idea of how things worked in an actual epidemic and helped us to understand what mathematical modeling really is.

Continue reading

Network Science

By Myla James, Shania Johnson, Maya Mukerjee, and Savitha Saminathan.

 

Graph Theory

Here’s some definitions to help you understand our assignment:

Nodes – vertex/point.
Edges – lines connecting vertices.
Adjacent – two nodes (vertices) are adjacent if they share an edge (line).
Degree – number of edges adjacent to a particular node.

We started this problem set with learning about the difference between connected and disconnected graphs.

Connected Graph – able to travel from one node to any other through its edges.
Disconnected graph – more complex; it has components.
Components – parts of the graphs that are connected.

Continue reading