RSA Encryption Cryptography

By Divya Aikat, Helena Harrison, Annie Qin, and Quinn Shanahan

The definition of cryptography is the art of writing and solving code. However, over the last two weeks, we learned so much more than just this textbook explanation. While working together within our team, we explored many different aspects behind cryptography. By building off our individual strengths, we prepared ourselves for higher level mathematics. The following is a synopsis of the progress we’ve made over the past two weeks.

Continue reading

Quantum Mechanics

By Kathryn Benedict, Olivia Fugikawa, Denna Huang, and Eleanor McAdon

Intro

Quantum mechanics is a subfield of physics. Like with any other major area of study, physics is divided into many smaller categories. Classical physics is the main one, which includes Newtonโ€™s Laws of Motion and basic principles of mechanics, like inertia and friction. Things get weird when you delve into modern physics, which includes special relativity, general relativity, and quantum mechanics. Special relativity deals with particles moving at the speed of light, general relativity works with incredibly massive objects and quantum mechanics is the physics of subatomic particles. This is what we worked on for the past two weeks and what our blog post is about!

Continue reading

The Art of Cryptography

By:ย Nia Beverly, Makayla McDaniel, Yuanyuan Matherly, and Tyler Deegan

Introduction

Cryptography is defined as the art of writing and solving codes. Upon first thought, many people picture codes as an antiquated war time communication technique. However, the field of cryptography is alive and well, ย and it has become pervasive in our everyday lives. The world is becoming more and more connected through technology, and with this, there is a greater need to protect information. Encryption is probably the most widely used application of cryptography, and it is used to protect information by making it so only one person with a key can understand what is transmitted. In the following paragraphs we will walk through the steps to mathematically understanding one widely used type of encryption.

Continue reading

Surfaces

By Elizabeth Datskevych, Nina Hadley, Sabrina James, and Rachel Ruff

In our problem set for the classification of surfaces, we learned many things about dimensions, folding, and the shapes folding makes. First we learned about what a dimension is. The definition of a dimension in this math is the direction an object can go. For example a bird can go up/down, left/right, and back/forth. Next we learned about folding and twisting objects. Diagram A shows a square with arrows on its side, which are the directions to fold. When you fold you match the arrows according to if they look-alike. So when you fold Diagram A it makes a cylinder. Now Diagram B has one arrow pointing the opposite of the other so you would twist before connecting the sides. Diagram B makes a Mobius band. We could make other shapes using the arrows such as the Klein bottle, and the torus. This topic was very fun and cool and it is a subject everyone will enjoy!!!!!!!!!!!!!!!!!!!!!!!#girlstalkmath #girlsrock #blog2017